On the way to **Planar Optronic Systems**

presented by: Prof. Dr.-Ing. Ludger Overmeyer
Outline

- Introduction
- Vision of sensor concepts
- Materials
- Production methods
- Characterization
- Summary
Hypotheses

- Light will be the main future media for signal transmission.
- Measured signals will be converted into light.
- Electrical signals will be exchanged for light signals.
- A fully optical world?
- What do we need to get there?
Why optical technologies?

Assumption: Optical systems will supplement/replace electronic systems in many areas of application.
Why using photons?

- Variety of planar sensor concepts
- Low energy consumption
- High bandwidth
- Electro-magnetic compatibility
- Simple multiplexing
- High integration density on various scales
Planarity is the key to the integration and processability in parallel processes.
Why using polymers?

- High functionality; versatile material class
- Modifiable to the application
- Efficient processability, even at high throughput, e.g. reel-to-reel process
- Simple build-up of large-scale systems
- Small layer thickness = high resource efficiency
- Hybrid-systems for trans-technology matrix structures possible
Reel-to-reel production
Integration of electronics

Past

Present

Past

Present

Sony

ATI
Planar integration of optics

Waveguides

Active elements

Beam forming

Pang et al.

Sandström et al.
Outline

- Introduction

- Vision of sensor concepts

- Materials

- Production methods

- Characterization

- Summary
PlanOS animation
What about future applications?

Movie 3: Application example, biomedicine technology (Lindner, 2014).

Movie 4: Application example, construction surveillance (Lindner, 2014).
Possible and new sensor concepts

- Interferometric sensors
- Strain detection sensors
- Temperature detection sensors
- Whispering gallery mode sensors
- Planar optical polymer foil spectrometer
Mach-Zehnder interferometric sensor

- Simulation for two bending paths
 - Cosine function
 \[x(z) = h \cdot \left(\frac{z}{l} - \frac{\sin(\frac{2\pi z}{l})}{2\pi} \right) \]
 - Sine function
 \[x(z) = h \cdot \sin^2 \left(\frac{\pi z}{2l} \right) \]
 - Loss_{\text{Cos}} < Loss_{\text{Sin}}

Fig. 15.1: S-bend functions for Mach-Zehnder interferometer (Hofmann, 2014).

Fig. 15.2: Transmission within S-bends (Hofmann, 2014).
Inverted rib waveguide

\(H = 500 \text{ nm} \)

Ribbon waveguide

\(H = 500 \text{ nm} \)

Hofmann, 2014

Planar integrated strain detection sensors

- Conversion of geometric strain into intensity modulation
- Micro-lenses focus beam
- Intensity dependent on elongation, i.e. distance to focus of beam

Fig. 17.1 (top, bottom left and right): Readout strategy of the strain sensor, shown for one detection waveguide (Kelb et al., 2014).

Planar integrated strain detection sensors

- Conversion of geometric strain into wavelength modulation
- Strain detection threshold 1 ‰ with CCD spectrometer
- Sensitivity limited by dispersion of uncollimated beam

Fig. 18.1: Chromatic strain sensor with grating (Kelb, 2014).

Fig. 18.2: Experimental setup of chromatic strain sensor for proof of concept (Kelb, 2014).
Planar integrated temperature detection sensors

- Negative thermo-optic coefficient
- Positive thermal expansion
- Material characterization extremely important
- Small spectral shift (-7×10^{-3} nm K\(^{-1}\)) → Detection?

Same order of magnitude

\[
\frac{dn}{dT} = -111 \times 10^{-6} \text{ K}^{-1} \\
\alpha = 75 \times 10^{-6} \text{ K}^{-1} \\
(\text{Weber, 2003})
\]

\[
\frac{dn}{dT} = -120 \times 10^{-6} \text{ K}^{-1} \\
\alpha = 70 \times 10^{-6} \text{ K}^{-1} \\
(\text{Suhir et al., 2007})
\]

Fig. 19.1: Concept for temperature sensor based on fiber-Bragg grating (IMTEK, Freiburg).

Fig. 19.2: Simulation results in PMME according to Weber (Sherman, 2014).

Fig. 19.3: Simulation results in PMME according to Suhir et al. (Sherman, 2014).

Whispering gallery mode resonators

- Foil integrated Whispering-gallery mode sensors
- Resonant frequencies very sensitive to changes on surrounding refractive index
- Ultimate target sensitivity: single-molecule detection in liquid phase

Simulation with RSoft

- Ring-resonator: inner diameter 4.5 µm, thickness 1 µm, n=1.59
- The left waveguide is used as an excitation source: thickness 1 µm, n=1.46
- In case of resonance: light is coupled into the ring-resonator, dip in the transmission signal

Figure 20.1: The microsphere is attached to one waveguide, another waveguide detects the transmitted signal.

Figure 20.2: Build-up of the electromagnetic field in the WGM of a 1 µm thick ring resonator, \(\lambda = 1089 \) nm (Petermann, 2014).
Simulations for singlemode waveguides

Singlemode waveguide cores with either high aspect ratio or small dimensions (< 700 nm)

ZnO nanowires in substrate against mechanical strain

Fig. 21.1: Sketch of an AWG (TU Clausthal).

Fig. 21.2: Geometry (height x width) of the simulated waveguides (TU Clausthal).

n_{cladding} = 1.5

n_{core}

h

w

Fig. 21.3: Simulations performed with PhotonDesing® FIMMWAVE, red bars represent the single-mode region (TU Clausthal).

Decoupling by implementation of ZnO-nanowires

- Adding of ammonia and PEI (polyethylenimine) improved the growth of ZnO nanowires
 - Ammonia produces Zn(OH)$_2$ (s)
 - PEI inhibits the radial growth of the ZnO nanowires.

- Nanoclusters formed in growth solution can be extracted more easily

Fig. 22.1: SEM image of ZnO nanowires (TU Clausthal).

Fig. 22.2: ZnO nanowire growth principle (TU Clausthal).
Outline

- Introduction
- Vision of sensor concepts
- Materials
- Production methods
- Characterization
- Summary
We need tailored polymers!

- **Target**
 - Development of polymers with tailored optical & thermo-mechanical properties for polymer waveguides

- **Concept**
 - Prepolymer synthesis with respect to
 - adjustable physical properties
 - use in a variety of shaping/molding techniques

- **Prepolymer**
 - adjustable viscosity ($10^{-3} – 10^{2}$ Pa•s)
 - UV/Vis curing favorable

- **Polymer**
 - adjustable refractive index ($1.39 < n < 1.65$ @ 589 nm)
 - optical damping less than 1 dB/m
 - continuous operation temperature > 100°C
Refractive index tailored hybrid polymers

- Prepolymer → MMA/PMMA/1,3-Butandioldimethacrylate (BDMA)
- Polymer → Poly(methylmethacrylate-co-1,3-butandioldimethacrylate)
- Dopant → Phenanthrene

Fig. 25.1: Viscosity adjustment with prepolymer concentration, 5 Pa·s > η > 0.15 Pa·s, @100 1/s, 60°C (IMTEK, Freiburg).

Fig. 25.2: Refractive index change with dopant concentration, 1.49 < n < 1.55, @589 nm, 20 ℃ (IMTEK, Freiburg).
Thermal properties of tailored polymers

- Glass transitions and/or decomposition reactions are monitored by Differential Scanning Calorimetry (DSC).

PMMA
(substrate material)

\[T_g = 124 \, ^\circ C \text{ (20 K/min)} \]

PMMA-2.5%SSAz

\[T_{g,1} = 130 \, ^\circ C \text{ (20 K/min)} \]
\[T_{g,2} = 140 \, ^\circ C \text{ (20 K/min)} \]
\[T_{\text{dec}} = 205 \, ^\circ C \]

PFA-2.5%MABP

\[T_m = 78 \, ^\circ C \]
Molecular weight has strong influence on embedding of nanoparticles into the polymer matrix.
Outline

- Introduction
- Vision of sensor concepts
- Materials
- Production methods
- Characterization
- Summary
Fig. 29.1: Planar optronic sensor system; highlighted waveguide (Wang, 2014).

Production concepts for integrated waveguides

- Laser processes
 - fs-laser processing
 - UV-photolithography

- Hot embossing and nano imprint

- Printing
 - Offset
 - Flexographic
 - Inkjet

- Lamination and surface coating
Direct writing of waveguides – a new approach

- Size grows with decreased repetition rate
 - Most likely due to leakage from Pulse Picker and linear absorption
- Some spots are missing

Fig. 31.1: Direct written structures in PMMA (Pätzold, 2014).

- $P = 400 \text{ mW}$
- $v_{\text{writing}} = 30 \text{ mm/s}$

$E_{\text{pulse}} = 80 \text{ nJ}$, $NA = 0.55$, stationary spots 200 µm below surface.

- 2×10^7 pulses/spot
- 2×10^6 pulses/spot
- 2×10^5 pulses/spot

- $f_{\text{rep}} = 1 \text{ MHz}$
- $f_{\text{rep}} = 100 \text{ kHz}$

- Estimated focal spot size: 150 µm

(Pätzold, 2014)
Polymer processing with fs-laser and UV-lithography

Two-Photon-Polymerization (2PP)

Microscope Projection Photolithography (MPP)

- Red LED (Long wavelength)
- UV LED
- Chromium Masks
- CCD Camera
- Objective
- Motorized translation stage XYZ
2PP vs. MPP

Fig. 33.1: Polymer waveguides on a glass substrate (Zywietz, 2014).

Fig. 33.2: Single polymer waveguide fabricated by 2PP (Zywietz, 2014).

Fig. 33.3: SEM-image of MPP generated polymer waveguides (Zywietz, 2014).

Fig. 33.4: Polymer waveguides on a highly flexible PMMA substrate (Zywietz, 2014).

Manufacturing of coupling structures and waveguides in 350 µm-thin polymer foils

Different coupling structures have been tested

Fig. 34.1: Fabricated optical waveguides through hot embossing (Rezem, 2014).

Fig. 34.2: Waveguide structures on a silicone embossing stamp (Rezem, Akin, 2014)

Fig. 34.3: Waveguide transmission losses as a function of the bend radius simulated in Zemax and RSoft (Rezem, 2014).

Fig. 34.4: Hot-embossing tool currently under development (Kelb, 2014).
Demand: Manufacture of planar waveguide network on polymer foil

Process requirements for large scale production:
- high throughput
- high resolution

Approach: Combination of two printing processes
- Flexographic printing for prestructuring of films with high throughput
- Inkjet printing for individual complement with high resolution
High throughput production of optical waveguides

- Flexographic printing machines
 - Process development in laboratory scale
 - Verification on modified industrial scale printing machine

- Inkjet printing machines

Fig. 36.1: Flexographic printing machine in laboratory scale, IGT F1 UV

Fig. 36.2: Printing machine Speedmaster SM52 (Source: Heidelberger Druckmaschinen AG).

Fig. 36.3: Pixdro LP 50 (Source: Meyer Burger)

Fig. 36.4: Dimatix DMP 2831 (Source: Dimatix)
Flexographic printing sequence:
1. Inking of anilox
2. Polymer transfer to printing plate
3. Mirror inverted reproduction on substrate

Additive manufacturing for cost and resource efficiency

Process chain from layout to printing results:

Fig. 37.1: Operating principle of flexographic printing (Wolfer, 2013).

Fig. 37.2: Process chain from layout to print results (Wolfer, 2014).
High throughput production of optical waveguides

- Printing of multimode optical waveguides

![Computed 3D model of printed waveguide](Wolfer, 2013).

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>20-1,000 µm</td>
</tr>
<tr>
<td>Height</td>
<td>4-110 µm</td>
</tr>
<tr>
<td>max. Aspect ratio</td>
<td>0.5</td>
</tr>
<tr>
<td>Speed of operation</td>
<td>50-260 m²/h</td>
</tr>
<tr>
<td>Surface roughness</td>
<td>12.5 nm</td>
</tr>
</tbody>
</table>

- Waveguide setup in layers with parabolic shape

![Possible waveguide concepts by combining the core and cladding layers](Wolfer, 2014).

High throughput production of optical waveguides

- Resulting geometries and properties
 - Layer wise application (up to 50 cycles)
 - Characteristic cross section: parabolic shape

Fig. 39.1: Confocal microscopy of printed waveguide (Wolfer, 2014).

Fig. 39.2: Cross sections of printed waveguides after different amounts of printing cycles (Wolfer, 2013).

Fig. 39.3: Cross sectional polish of printed optical waveguide on PVC substrate (Wolfer, 2014).

Simulation of printed waveguides

- Multiple printing cycles lead to:
 - Larger contact angle
 - Higher waveguide geometry
 - Geometry susceptible to manipulation

- Ray tracing simulation to estimate and optimize optical attenuation
 - Ray tracing using Zemax
 - Source @ 638 nm
 - Numerical aperture 0.27
 - Contact angle variation 15-90 degree

Fig. 40.1: Optical attenuation vs. contact angle according to ray tracing simulation (Wolfer, 2014).

Fig. 40.2: Ray tracing simulation (Zemax), light intensity in dependence of contact angle and waveguide height (Wolfer, 2014).
Simulation of printed waveguides

- **Sources of roughness**
 - Substrate surface
 - Interface of core layers
 - Interface core/cladding

 - Considered in ray tracing as Gaussian scattering

- **Approach for smoother surfaces: self alignment of polymer by local variation of surface energy**
 - Decrease of surface roughness
 - Decrease of lateral undulations
 - Higher contact angle
 - Higher aspect ratio

 - Lower attenuation expected

Fig. 41.1: Ray tracing simulation (Zemax), roughness considered as Gaussian scattering (Wolfer, 2014).

Fig. 41.2: Left: Conditioned PVC substrate with distributed acrylate. Right: Confocal microscopy of self aligned polymer (acrylate)
Reactive lamination and functionalized surfaces

- Successful lamination of COC and PMMA foils using an interlayer of a sulfonazide containing polymer

- Production of nano-composites and continuous transitions from polymer to oxide with sputtering methods
 - Ta$_2$O$_5$ nano-particles produced by a gas aggregation source on a layer of ion-beam sputtered PTFE
 - The size of the nano-particles is between 16 nm and 24 nm

Fig. 42.1: Partially laminated COC and PMMA foils (Rother, 2014).

Fig. 42.2: Ion beam sputtering (Gauch, 2014).

Fig. 42.3: SEM image of Ta$_2$O$_5$ nanoparticles (Gauch, 2014).
What about active optical systems?

Fig. 43.1: Planar optronic sensor system; highlighted diodes (Wang, 2014).
Optodic bonding as bridging technology

- High success rate → 95%
- Short process time → app. 10 s
- Mechanical strength → 23 N/mm²

Fig. 44.1 (right): Schematic illustration of optode for sideway irradiation (Wang, 2014)

- Electrical conductivity
 - panacol 4732: 0.292 Ω
 - Dymax OP-29: 0.169 Ω
 - Dymax OP-29-Gel: 0.112 Ω
 - Dymax OP-24-Rev-B: 0.110 Ω
 - Delo GB368: 0.286 Ω

Fig. 44.2: Photo of realized optode. (Low Temperature Optodic Bonding for Integration of Micro Optoelectronic Components in Polymer Optronic Systems, Wang et al., SysInt 2014, accepted).
Optodic bonding as bridging technology

Fig. 45.1: Success rate of optodic bonded chips dependent on irradiation time, intensity of 7070 mW/cm² (Wang, 2014)

Fig. 45.2: Electric resistance of optodic bonded chips dependent on irradiation time, intensity of 7070 mW/cm² (Wang, 2014)

Fig. 45.3: Bare Laser diode CHIP-650-P5 (Wang 2013).

Fig. 45.4: Image from confocal microscopy (Wolfer and Wang 2013).

Thickness < 1 µm

Challenge

Optical coupling of single mode waveguide
Integration of OLEDs and OPDs into waveguide systems

- Waveguide integrated device for detection at 634 nm
 - ITO on polymer waveguide
 - Structure optimization for high responsivity

- Optical simulations of OPD/waveguide structures
 - Mode distribution
 - Waveguide losses (loss channels)
Photodetector operation parameters

Measured @ 635 nm

Dark current:
1 nA (best) = 33 nA/cm²

Responsivity:
320 mA/W @ -1V
63% EQE, commercial Si ~ 80%

Bandwidth:
1 MHz (limited by setup)
Laser-active waveguides

Fig. 48.1: Laser-active nanoparticle generation (Sajti, 2013).

Fig. 48.2: Homogenous particle embedding (Sajti, 2013).

Fig. 48.3: Laser-active polymer waveguide (Sajti, 2013).

Fig. 48.4: Flexible laser module (Kwon et al., 2008).

Fig. 48.5: Laser-active particles in colloidal (Sajti, 2013) form.

Fig. 48.6: Size distribution of laser-active particles (Sajti, 2013).

Fig. 48.7: SEM-image of Nd:KGW embedded ormosil waveguide (Sajti, 2013).

Outline

- Introduction
- Vision of sensor concepts
- Materials
- Production methods
- Characterization
- Summary
Measurement of optical transmission properties

- Attenuation of waveguides
- Refraction index distribution
- Light dispersion in waveguides
- Coupling efficiency between interfaces

⇒ Some examples of spectral measurement equipment
Identification of length-independent attenuation

- Light sources
 - **LED**, including confocal pattern for end face characterization
 - **Diode laser** (638 nm, 140 mW)

- Numerical aperture steplessly variable within 0.1-0.5

- Aperture sizes: 1-1,000 μm

Fig. 51.1: End face of printed waveguide in optical measurement setup with focused LED spot (Wolfer, 2014).

Fig. 51.2: Optical measurement setup (Dumke, ITA, 2014).
Ellipsometer (Sentech)
- Thickness and refractive index measurement of thin layers (up to 100 µm)
- Operating Wavelength 280 – 1700 nm

Refractive Index Profilometer (Rinck)
- Refractive index measurements of transparent materials
- Different wavelengths (405, 635, 850, and 1320 nm)
- Measurement area: 500 µm x 500 µm

Fig. 52.1: FTIR Ellipsometer Sentech SE 850 (Kelb, 2014).

Fig. 52.2: Refractive Index Profilometer (Günther, 2014).
Fig. 53.1: Epocore waveguides structured on a silicon wafer (Günther, 2014).

Fig. 53.2: Waveguide written by laser direct writing into the substrate (Günther, 2014).

- **Epocore waveguides structured on a silicon wafer**
 - Substrate: silicon
 - Core material: epocore
 - Resolution 1.25 µm/pixel

- **Profilometer specifications**
 - Refractive index resolution up to 10^{-4}
 - Spatial resolution: 0.5 µm
 - Wavelength: 405 nm, 635 nm, 845 nm, 1320 nm
Outline

- Introduction
- Vision of sensor concepts
- Materials
- Production methods
- Characterization
- Summary
Sensors for excellent flight performances …

Fig. 55.1: Illustration of nerve tracks on bat wing (Türk, 2014).
... and for stress and temperature surveillance

Movie 5: Application example, structural monitoring of wing (Lindner, 2014).

Fig. 56.1: Illustration of planar sensor foil on airplane wing (Türk, 2014).
Summary

- **Planar sensors** concepts for measurement of
 - Temperature
 - Strain
 - Liquid and gaseous analytes

- Development of thermo-mechanical and chemical stable as well as refractive index **tailored polymers**

- High throughput production of waveguides in **reel-to-reel process** - a combination of
 - Printing
 - Hot embossing
 - Laser processing
 - Lithography

- **Optodical bonding** as **bridging technology**

- **Equipment available for characterization of**
 - Refractive index
 - Thickness
 - Attenuation
 - Form stability
 - Glass transition temperature
The PlanOS science team (alphabetical order):

Funded by German Research Foundation
(Deutsche Forschungsgemeinschaft)